Подробно: собствен ремонт на мултицет dt 832 от истински майстор за сайта my.housecope.com.
Когато ремонтирате електроника, трябва да извършите голям брой измервания с различни цифрови инструменти. Това е осцилоскоп, измервател на ESR и това, което се използва най-често и без използването на което не може да се направи ремонт: разбира се, цифров мултиметър. Но понякога се случва, че помощ вече се изисква от самите инструменти и това се случва не толкова от неопитност, прибързаност или невнимание на майстора, а от досаден инцидент, какъвто ми се случи наскоро.
Мултиметър от серия DT - Външен вид
Беше така: след смяна на счупения полеви транзистор по време на ремонта на захранването на LCD телевизора, телевизорът не работи. Възникна идея, която обаче трябваше да дойде още по-рано, на етапа на диагностика, но набързо не беше възможно да се провери PWM контролера за поне ниско съпротивление или късо съединение между краката. Изваждането на платката отне много време, микросхемата беше в нашия DIP-8 пакет и не беше трудно да се звъни на крака на късото съединение дори отгоре на платката.
Електролитен кондензатор 400 волта
Изключвам телевизора от електрическата мрежа, изчаквам стандартните 3 минути за разреждане на кондензаторите във филтъра, онези много големи варели, електролитни кондензатори за 200-400 Волта, които всички видяха при разглобяването на импулсно захранване.
Докосвам сондите на мултиметъра в режим на звуково набиране на краката на PWM контролера - внезапно се чува звуков сигнал, изваждам сондите, за да извикам останалите крака, сигналът звучи още 2 секунди. Е, мисля, че това е всичко: отново изгоряха 2 резистора, единият във веригата за измерване на съпротивлението на режим 2 kOhm, при 900 Ohm, вторият при 1,5 - 2 kOhm, което най-вероятно е в защитните вериги на ADC. Вече се сблъсках с подобна неприятност, в миналото един приятел ме удари с тестер по същия начин, така че не се разстроих - отидох в радиомагазина за два резистора в SMD корпуси 0805 и 0603, една рубла на брой , и ги запоявах.
Видео (щракнете за възпроизвеждане). |
Търсенето на информация за ремонта на мултиметри на различни ресурси наведнъж даде няколко типични схеми, въз основа на които се изграждат повечето модели евтини мултиметри. Проблемът беше, че референтните обозначения на таблата не съвпадаха с обозначенията на намерените диаграми.
Изгорели резистори на платката на мултиметъра
Но имах късмет, на един от форумите човек описа подробно подобна ситуация, повреда на мултиметъра при измерване с наличие на напрежение във веригата, в режим на звуково набиране. Ако нямаше проблеми с резистора 900 Ohm, няколко резистора на платката бяха свързани във верига и беше лесно да се намери. Освен това по някаква причина той не стана черен, както обикновено се случва по време на горене, и беше възможно да се прочете номиналът и да се опита да измерите неговото съпротивление. Тъй като мултицетът съдържа точни резистори, които имат 4 цифри в обозначението си, по-добре е, ако е възможно, да смените резисторите на точно същите.
В нашия радиомагазин нямаше прецизни резистори и взех обикновения за 910 ома. Както показа практиката, грешката при такава подмяна ще бъде доста незначителна, тъй като разликата между тези резистори, 900 и 910 ома, е само 1%. Определянето на стойността на втория резистор беше по-трудно - от неговите изводи имаше коловози до два преходни контакта, с метализация, към задната част на платката, към превключвателя.
Място за запояване на термистор
Но отново имах късмет: на платката бяха оставени две дупки, свързани с писти успоредно с проводниците на резистора и те бяха подписани от RTS1, тогава всичко беше ясно. Термисторът (RTS1), както знаем от импулсните захранвания, е запоен с цел ограничаване на токовете през диодите на диодния мост при включване на импулсното захранване.
Тъй като електролитните кондензатори, тези много големи варели от 200-400 волта, в момента, в който захранването е включено и първите части от секундата в началото на зареждането, се държат почти като късо съединение - това причинява големи токове през моста диоди, в резултат на което мостът може да изгори.
Казано по-просто, термисторът има ниско съпротивление в нормален режим, когато протичат малки токове, съответстващи на режима на работа на устройството. При рязко многократно увеличаване на тока съпротивлението на термистора също се увеличава рязко, което според закона на Ом, както знаем, причинява намаляване на тока в секцията на веригата.
Резистор 2 Kom Ohm на диаграмата
При ремонт на веригата вероятно сменяме на резистор 1,5 kΩ, резисторът, посочен на веригата с номинална стойност 2 kΩ, както са написали на ресурса, от който са взели информацията, при първия ремонт, неговата стойност е не е критично и беше препоръчително да го поставите все пак на 1,5 kΩ.
Продължаваме... След като кондензаторите се заредят и токът във веригата намалее, термисторът намалява съпротивлението си и устройството работи нормално.
900 ома резистор на диаграмата
Защо вместо този резистор е инсталиран термистор в скъпи мултиметри? Със същата цел като при импулсните захранвания - да се намалят големи токове, които могат да доведат до изгаряне на ADC, възникващи в нашия случай в резултат на грешка на главния, извършващ измерванията, и по този начин да се защити аналогово-цифровото конвертор на устройството.
Или, с други думи, тази много черна капка, след чието изгаряне устройството обикновено вече няма смисъл да се възстановява, защото това е трудоемка задача и цената на частите ще надвиши поне половината от цената на нов мултицет.
Как можем да запояваме тези резистори - може би начинаещите, които преди това не са се занимавали с SMD радиокомпоненти, ще помислят. В крайна сметка те най-вероятно нямат сешоар за запояване в домашната си работилница. Тук има три начина:
- Първо, ще ви трябва поялник EPSN с мощност 25 вата, с острие с разрез в средата, за да загреете и двата терминала наведнъж.
- Вторият начин, чрез отхапване със странични резачки, капка Rose или Wood's сплав, веднага върху двата контакта на резистора, и сплескане на двата терминала с жило.
- И третият начин, когато нямаме нищо друго освен 40-ватов поялник от типа EPSN и обикновената спойка POS-61 - прилагаме го към двата кабела, така че спойките да се смесват и в резултат на това общата температура на топене на безоловната спойка намалява и ние нагряваме двата проводника на резистора последователно, като се опитваме да го преместим малко.
Обикновено това е достатъчно, за да може нашият резистор да бъде запечатан и да се залепи за върха. Разбира се, не забравяйте да приложите флюса, по-добре е, разбира се, течен алкохолен колофонен флюс (GFR).
Във всеки случай, без значение как демонтирате този резистор от платката, неравностите от стара спойка ще останат на платката, трябва да я премахнем с помощта на демонтажна плитка, потапяйки я в флюс от алкохол и колофон. Поставяме върха на плитката директно върху спойката и го притискаме, като го загряваме с върха на поялника, докато цялата спойка от контактите се абсорбира в оплетката.
Е, тогава е въпрос на технология: вземаме резистора, който купихме от радиомагазина, поставяме го на контактните подложки, които сме освободили от спойката, притискаме го с отвертка отгоре и докосваме подложките и проводниците, разположени на ръбовете на резистора с върха на 25-ватов поялник, запоете го на място.
Оплетка за спойка - Приложения
Първият път вероятно ще се окаже крив, но най-важното е, че устройството ще бъде възстановено. Във форумите мненията за такива ремонти бяха разделени, някои твърдяха, че поради евтиността на мултиметрите изобщо няма смисъл да ги ремонтирате, казват, че са го изхвърлили и са отишли да купят нов, други дори са били готови да отидете докрай и отново запоете ADC). Но както показва този случай, понякога ремонтът на мултицет е доста прост и рентабилен и всеки домашен майстор може лесно да се справи с такъв ремонт.Успешен ремонт на всички! AKV.
Поздрави на потребителите на сайта Радио вериги... Днес ще ви кажа как да удължите живота на мултицета DT-832 и неговите аналози.
Този мултицет е използван около половин година и работи безупречно. Реших да му удължа живота, защото нямам нито пари, нито желание да си купя нов. С мултиметъра са направени следните модификации:
- Направена е стойка за мултицет.
- Добавен е плъзгащ превключвател за изключване на мултиметъра.
- Проводниците за сондите бяха сменени.
Но първо нещата. Първата стъпка беше да направим стойка за мултицета, за това ни трябва лист пластмаса - взех го от кутията на съветски телевизор. Размерите на стойката са показани на снимката.
След като всички части са изрязани, ние ги залепваме заедно с горещо лепило или друго лепило.
Проверяваме дали мултицетът седи плътно в кутията - след това отиваме по-нататък, остава да изрежем стойката под кутията, за това изрязваме частта под формата на буквата „А“ и я завинтваме към кутията завесите. След това инсталирахме плъзгащ превключвател, това е необходимо, за да се сведе до минимум превключването на плъзгача за избор на режим на работа на мултиметъра. Развийте задния капак на мултиметъра
извадете батерията и развийте самата платка.
Внимателно извадете превключвателя за режим на тестване и най-важното - не губете топките.
След това изваждаме екрана на мултиметъра, като в процеса е важно да не изключваме екрана от гумения адаптер към платката. Защо? Откъснете го - ще разберете))
След като изключихме всичко, остава ни един случай, в който трябва да изберем място за инсталиране на самия превключвател, в моя мултицет вече имаше дупка от фабриката за инсталиране на превключвателя. Инсталираме превключвателя на това място и го залепваме с горещо лепило.
След това запояваме превключвателя в процепа на захранването на мултиметъра и събираме всичко обратно.
И последната промяна е смяната на проводниците на тестера.
Използвах медна тел с диаметър 2 мм и дължина 50 см. След това запояваме единия край на проводника към сондата, а другият е запоен, както е на снимката.
Такива прости промени могат да бъдат чудесни за разширяване на работата на цифровите мултиметри. Специално за сайта Радио вериги - готин tnt.
Аналоговите мултиметри бяха много бързо изтласкани от пазара от устройства, базирани на ADC (аналогово-цифрови преобразуватели). Това се случи поради редица обективни причини (компактни размери, висока точност, яснота на предоставения резултат, приемлива цена и др.), Но такива измервателни устройства имат редица недостатъци.
И най-значимото е сложността на ремонта.
Първо, съвременните производители не са склонни да споделят схематичните диаграми на устройствата, което значително усложнява отстраняването на неизправности.
И второ, микросхемата, лежаща в основата на устройството, е трудна не само за диагностициране, но и за замяна (често кристалът не е просто запоен към платката, но и допълнително запълнен с твърдо лепило, което предпазва кристала и също така увеличава преноса на топлина) .
Описание на мултиметри DT 832
Мултиметрите от серия 830 са много популярни. Те съчетават широка функционалност и ниска цена. Тези устройства са базирани на ICL1706 ADC IC, разработена от MAXIM. Въпреки че в момента има много аналози от конкуренти, има дори руска реализация - 572PV5).
Оригиналната серия от измервателни уреди е маркирана като M832, модификацията DT е евтин аналог от китайски производители. Въпреки това функционалността и основната схема са запазени.
Мултиметрите са подходящи за измерване на напрежения от 200 mV до 1 kV (за DC), токове от 200 μA до 10 A и съпротивления от 200 Ohm до 2 MΩ.
И така, основните радиоелементи са посочени на диаграмата по-долу.
Ориз. 1. Схематична диаграма
За да разберете основните логически връзки между възлите на устройството, можете да изучите функционалната диаграма.
Ориз. 2. Функционална схема
Най-добре е да извадите изводите на микроконтролера отделно.
Най-интересното е, че дори и със схематична диаграма в ръка, ще бъде много проблематично да поправите мултицет.За да разберете защо това се случва, е по-лесно да видите всичко веднъж.
Ориз. 4. Микросхема в основата на устройството
Микросхемата е наводнена, а контактите не са посочени по никакъв начин, което значително усложнява звъненето на проблемни елементи, контролните точки не са посочени.
Поради факта, че има много причини за повреди, по-долу ще разгледаме най-често срещаните.
Ориз. 5. Фиксиране на части на устройството
1. Счупен ключ... Поради лошото качество на смазката, буквално след няколко години, вече може да има забележима трудност при превключване на режима. Друг често срещан проблем е падането на топките за налягане (на снимката по-горе). В този случай устройството спира да работи напълно, а при разклащане се чува характерен шум. Дефектът се отстранява чрез просто повторно сглобяване и смазване (най-добре е да се използва силикон) на превключвателя.
2. Изгаряне на отделни елементи... Много популярен вид повреда, когато по време на процеса на измерване превключвателят не се премества в желаната позиция и полученото натоварване надвишава допустимата стойност. В този случай при определени видове измервания има проблеми с коректността на получените данни. За диагностика трябва да имате схема с известни параметри или друг работещ мултицет. При разглобяването е много лесно да се намери изгорял елемент. Ще стане черен. Проблемът се решава чрез замяната му с пълен аналог (необходимо е да се използва схематичната диаграма по-горе, за да се изясни номиналната стойност).
3. Екранът изгасва (когато е включен, светва нормално, но по-късно изгасва плавно)... Проблемът най-вероятно е в генератора на часовник. В този случай задвижващите елементи на осцилаторната верига са C1 и R15. Те трябва да бъдат проверени и подменени, ако е необходимо.
4. Екранът изгасва, но със свален капак работи както се очаква... С голяма вероятност задният капак докосва резистора R15 с контактната пружина и късо свързва главния осцилатор. Проблемът се решава чрез скъсяване на пружината (или огъването й).
5. В режим на измерване на напрежението показанията се променят спонтанно от 0 до 1... Най-вероятно проблемът е в схемата на интегратора. Можете да проверите и, ако е необходимо, да замените кондензатори C2, C4, C5 и съпротивление R14.
6. В режим на измерване на съпротивлението показанията се задават за дълго време... Проверете и сменете C5.
7. Данните на дисплея се изтриват за дълго време... Най-вероятно проблемът е в кондензатора C3 (ако капацитетът е нормален, той може да бъде заменен с аналог с намален коефициент на поглъщане).
8. Във всеки от избраните режими мултицетът не работи правилно, самата микросхема се нагрява... Необходимо е преди всичко да се провери дали има късо съединение в клемите, свързани към конектора, за да се тестват транзисторите. Можете да потърсите късо съединение на други места във веригата.
9. Отделни сегменти изчезват и се появяват на LCD дисплея... С голяма степен на вероятност проводимостта през гумените вложки (чрез които дисплеят е свързан към платката) се е влошила. Необходимо е да разглобите връзката, да избършете контактите с алкохол, да калайдите контактните подложки на платката, ако е необходимо.
Това не е пълен списък с възможни неизправности. Задълбочена визуална проверка на устройството, анализ на индикаторите на контролните точки и звънене на елементите на хотела ще помогнат за намирането им. За проверка с "нормата" е най-добре да имате под ръка известен работещ DT 832 (като справка).
- Евгений / 14.09.2018 - 17:12ч
Схематичната диаграма не отговаря нито на снимката (нито на самия модел). - Александър / 25.06.2018 - 13:59ч
мултиметър DT832 платка 8671 (832.4c-110426) снимката съвпада с моя мултицет, но на диаграмата резисторите не съвпадат с броя на омите. Например, имам 6R4 = 304, 6Rt1 = 102.6R3 = 105, 6R2 = 224, Rx2 = 205 и има други числа в диаграмата по-горе.
Можете да оставите своя коментар, мнение или въпрос в горния материал:
Невъзможно е да си представим работната маса на майстора без удобен, евтин цифров мултицет.Тази статия описва устройството на цифровите мултиметри от серия 830, неговата верига, както и най-често срещаните неизправности и как да ги поправите.
В момента се произвежда огромно разнообразие от цифрови измервателни уреди с различна степен на сложност, надеждност и качество. Основата на всички съвременни цифрови мултиметри е интегриран аналогово-цифров преобразувател на напрежение (ADC). Един от първите такива ADC, подходящи за конструиране на евтини преносими измервателни уреди, беше преобразувател на базата на микросхема ICL7106, произведена от MAXIM. В резултат на това са разработени няколко успешни евтини модела цифрови мултиметри от серия 830, като M830B, M830, M832, M838. DT може да се използва вместо буквата M. Тази серия инструменти в момента е най-разпространената и най-повтаряемата в света. Основните му възможности: измерване на постоянни и променливи напрежения до 1000 V (входно съпротивление 1 MΩ), измерване на постоянни токове до 10 A, измерване на съпротивления до 2 MΩ, тестване на диоди и транзистори. Освен това в някои модели има режим на звукова непрекъснатост на връзките, измерване на температура със и без термодвойка, генериране на меандър с честота 50 ... 60 Hz или 1 kHz. Основният производител на тази серия мултиметри е Precision Mastech Enterprises (Хонконг).
Основата на мултиметъра е ADC IC1 от типа 7106 (най-близкият домашен аналог е микросхемата 572PV5). Неговата структурна схема е показана на фиг. 1, а изводът за версията в пакета DIP-40 е показан на фиг. 2. Ядрото 7106 може да бъде предшествано от различни префикси в зависимост от производителя: ICL7106, ТС7106 и др. Напоследък все по-често се използват микросхеми без чипове (DIE чипове), чийто кристал е запоен директно към печатната платка.
Помислете за схемата на мултиметъра Mastech M832 (фиг. 3). Пин 1 на IC1 доставя положително 9V захранващо напрежение на батерията, а Пин 26 доставя отрицателно захранване на батерията. Вътре в ADC има стабилизиран източник на напрежение 3 V, входът му е свързан към пин 1 на IC1, а изходът е свързан към пин 32. Пин 32 е свързан към общия щифт на мултиметъра и е галванично свързан към COM входа на устройството. Разликата в напрежението между изводи 1 и 32 е приблизително 3 V в широк диапазон от захранващи напрежения - от номинално до 6,5 V. Това стабилизирано напрежение се подава към регулируемия делител R11, VR1, R13 и от неговия изход към входа на микросхема 36 (в режим измерване на токове и напрежения). Делителят задава потенциала U на щифт 36, равен на 100 mV. Резисторите R12, R25 и R26 изпълняват защитни функции. Транзисторът Q102 и резисторите R109, R110 и R111 са отговорни за индикацията на разреждането на батерията. Кондензаторите C7, C8 и резисторите R19, R20 са отговорни за показването на десетичните точки на дисплея.
Диапазон на работното входно напрежение Uмакс пряко зависи от нивото на регулираното еталонно напрежение на изводи 36 и 35 и е
Стабилността и точността на дисплея зависи от стабилността на това референтно напрежение.
Показанията на дисплея N зависят от входното напрежение U и се изразяват като число
Опростена схема на мултиметъра в режим на измерване на напрежението е показана на фиг. 4.
При измерване на постояннотоково напрежение входният сигнал се подава към R1… R6, от изхода на който чрез превключвател [според схемата 1-8 / 1… 1-8 / 2) се подава към защитния резистор R17 . Този резистор също така образува нискочестотен филтър при измерване на променливо напрежение заедно с кондензатора C3. След това сигналът отива към директния вход на микросхемата ADC, щифт 31. Потенциалът на общия щифт, генериран от 3 V стабилизиран източник на напрежение, щифт 32, се подава към обратния вход на микросхемата.
При измерване на променливо напрежение то се изправя от полувълнов токоизправител на диод D1. Резисторите R1 и R2 са избрани така, че при измерване на синусоидално напрежение, устройството да показва правилната стойност. Защитата на ADC се осигурява от делителя R1 ... R6 и резистора R17.
Опростена схема на мултиметъра в текущия режим на измерване е показана на фиг. 5.
В режима на измерване на постоянен ток, последният преминава през резисторите R0, R8, R7 и R6, които се превключват в зависимост от обхвата на измерване.Спадът на напрежението на тези резистори през R17 се подава към входа на ADC и резултатът се показва. Защитата на ADC се осигурява от диоди D2, D3 (при някои модели може да не са инсталирани) и предпазител F.
Опростена схема на мултиметъра в режим на измерване на съпротивлението е показана на фиг. 6. В режим на измерване на съпротивлението се използва зависимостта, изразена с формула (2).
Диаграмата показва, че същият ток от източника на напрежение + U протича през еталонния резистор и измерения резистор R" (токовете на входовете 35, 36, 30 и 31 са незначителни) и съотношението на U и U е равно на съотношение на съпротивленията на резисторите R" и R ^. R1..R6 се използват като референтни резистори, R10 и R103 се използват като резистори за настройка на ток. Защитата на ADC се осигурява от термистор R18 (някои евтини модели използват конвенционални резистори 1,2 kΩ), транзистор Q1 в режим на ценеров диод (не винаги е инсталиран) и резистори R35, R16 и R17 на входове 36, 35 и 31 на ADC.
Режим на непрекъснатост Веригата за набиране използва IC2 (LM358), който съдържа два операционни усилвателя. На единия усилвател е сглобен звуков генератор, а на другия компаратор. Когато напрежението на входа на компаратора (пин 6) е по-малко от прага, на неговия изход (пин 7) се задава ниско напрежение, което отваря ключа на транзистора Q101, в резултат на което се издава звуков сигнал излъчвана. Прагът се определя от делителя R103, R104. Защитата се осигурява от резистор R106 на входа на компаратора.
Всички неизправности могат да бъдат разделени на фабрични дефекти (и това се случва) и повреди, причинени от грешни действия на оператора.
Тъй като мултиметрите използват стегнато окабеляване, са възможни къси елементи, лошо запояване и счупване на проводниците на елементите, особено тези, разположени в краищата на платката. Ремонтът на дефектно устройство трябва да започне с визуална проверка на печатната платка. Най-често срещаните фабрични дефекти на мултиметри M832 са показани в таблицата.
LCD дисплеят може да бъде проверен за правилна работа с помощта на източник на променливо напрежение 50,60 Hz с амплитуда от няколко волта. Като такъв източник на променливо напрежение можете да вземете мултицет M832, който има режим на генериране на меандър. За да проверите дисплея, поставете го на равна повърхност с дисплея нагоре, свържете една сонда на мултиметъра M832 към общия извод на индикатора (долен ред, ляв терминал) и приложете другата сонда на мултиметъра последователно към останалите на дисплея. Ако е възможно да се получи запалването на всички сегменти на дисплея, тогава той е изправен.
Горните неизправности могат да се появят и по време на работа. Трябва да се отбележи, че в режим на измерване на DC напрежение, устройството рядко се проваля, т.к добре защитени от входни претоварвания. Основните проблеми възникват при измерване на ток или съпротивление.
Ремонтът на дефектно устройство трябва да започне с проверка на захранващото напрежение и работоспособността на ADC: стабилизиращото напрежение е 3 V и няма пробив между захранващите щифтове и общия изход на ADC.
В текущия режим на измерване при използване на входове V, Q и mA, въпреки наличието на предпазител, може да има случаи, когато предпазителят изгори по-късно, отколкото предпазните диоди D2 или D3 имат време да пробият. Ако в мултиметъра е инсталиран предпазител, който не отговаря на изискванията на инструкциите, тогава в този случай съпротивленията R5 ... R8 може да изгорят и това може да не се появи визуално върху съпротивленията. В първия случай, когато само диодът пробие, дефектът се появява само в текущия режим на измерване: токът протича през устройството, но дисплеят показва нули. В случай на изгаряне на резистори R5 или R6 в режим на измерване на напрежението, устройството ще надцени показанията или ще покаже претоварване. Когато единият или двата резистора са напълно изгорени, устройството не се нулира в режим на измерване на напрежението, но когато входовете са затворени, дисплеят се настройва на нула.Когато резисторите R7 или R8 изгорят при текущите измервателни диапазони от 20 mA и 200 mA, устройството ще покаже претоварване, а в диапазона 10 A - само нули.
В режим на измерване на съпротивлението обикновено възникват неизправности в диапазона от 200 ома и 2000 ома. В този случай, когато напрежението се приложи към входа, резисторите R5, R6, R10, R18, транзисторът Q1 могат да изгорят и кондензаторът C6 може да пробие. Ако транзисторът Q1 е напълно счупен, тогава при измерване на съпротивлението устройството ще покаже нули. В случай на непълна повреда на транзистора, мултицетът с отворени сонди ще покаже съпротивлението на този транзистор. В режимите на измерване на напрежение и ток транзисторът е късо съединение от превключвател и не влияе на показанията на мултиметъра. При повреда на кондензатор C6, мултицетът няма да измерва напрежението в диапазоните от 20 V, 200 V и 1000 V или значително да подценява показанията в тези диапазони.
Ако на дисплея няма индикация, когато има захранване към ADC или има визуално забележимо изгаряне на голям брой елементи на веригата, има голяма вероятност от повреда на ADC. Изправността на ADC се проверява чрез следене на напрежението на стабилизирания източник на напрежение 3 V. На практика ADC изгаря само когато към входа се подаде високо напрежение, много по-високо от 220 V. Много често се появяват пукнатини в съединението на ADC с отворена рамка, консумацията на ток на микросхемата се увеличава, което води до забележимо нагряване ...
При подаване на много високо напрежение към входа на устройството в режим на измерване на напрежението може да възникне повреда в елементите (резисторите) и на печатната платка, в случай на режим на измерване на напрежението, веригата е защитена от делител на съпротивленията R1.R6.
При евтини модели от серия DT дългите проводници на части могат да бъдат окъсени към екрана, разположен на гърба на устройството, което нарушава работата на веригата. Mastech няма такива дефекти.
Източник на стабилизирано напрежение от 3 V в ADC за евтини китайски модели може на практика да даде напрежение от 2,6-3,4 V, а за някои устройства спира да работи вече при напрежение на захранваща батерия от 8,5 V.
Моделите DT използват нискокачествени ADC и са много чувствителни към рейтингите на веригата на интеграторите C4 и R14. Висококачествените ADC в мултиметри Mastech позволяват използването на елементи от близки деноминации.
Често при DT мултиметри, когато сондите са отворени в режим на измерване на съпротивлението, устройството се приближава до стойността на претоварване за много дълго време („1“ на дисплея) или изобщо не е зададено. Възможно е да се "излекува" некачествена ADC микросхема чрез намаляване на стойността на съпротивлението R14 от 300 на 100 kOhm.
При измерване на съпротивления в горната част на диапазона, устройството "промива" показанията, например при измерване на резистор със съпротивление 19,8 kOhm показва 19,3 kOhm. Той се "лекува" чрез замяна на кондензатор C4 с кондензатор от 0,22 ... 0,27 μF.
Тъй като евтините китайски фирми използват нискокачествени неопаковани ADC, има чести случаи на счупени щифтове и е много трудно да се определи причината за неизправността и тя може да се прояви по различни начини, в зависимост от счупения щифт. Например, един от проводниците на индикатора е изключен. Тъй като мултиметрите използват дисплеи със статична индикация, тогава за да се определи причината за неизправността, е необходимо да се провери напрежението на съответния щифт на микросхемата на ADC, то трябва да бъде около 0,5 V спрямо общия щифт. Ако е нула, тогава ADC е дефектен.
Има неизправности, свързани с некачествени контакти на превключвателя за бисквити, устройството работи само когато бисквитата е натисната. Фирмите, които произвеждат евтини мултиметри, рядко покриват релсите под въртящия се превключвател с грес, поради което те бързо се окисляват. Често пистите са мръсни. Ремонтира се по следния начин: печатната платка се изважда от кутията и релсите на превключвателя се избърсват със спирт.След това се нанася тънък слой технически вазелин. Всичко, уредът е ремонтиран.
При устройства от серия DT понякога се случва променливото напрежение да се измерва със знак минус. Това показва неправилна инсталация на D1, обикновено поради неправилна маркировка върху тялото на диода.
Случва се производителите на евтини мултиметри да поставят нискокачествени операционни усилватели във веригата на генератора на звук и след това, когато устройството е включено, се чува бръмчащ зумер. Този дефект се елиминира чрез запояване на 5 μF електролитен кондензатор успоредно на захранващата верига. Ако това не гарантира стабилната работа на звуковия генератор, тогава е необходимо да смените операционния усилвател с LM358P.
Често има такава неприятност като изтичане на батерията. Малки капки електролит могат да бъдат изтрити с алкохол, но ако дъската е силно наводнена, тогава добри резултати могат да се получат, като се измие с гореща вода и сапун за пране. След премахване на индикатора и разпояване на зумера, като използвате четка, например четка за зъби, трябва да сапуните добре дъската от двете страни и да я изплакнете под течаща вода от крана. След повторение на измиването 2,3 пъти, дъската се изсушава и монтира в кутията.
Най-скоро произведените устройства използват ADC с DIE чипове. Кристалът е инсталиран директно върху печатната платка и е запълнен със смола. За съжаление това значително намалява поддръжката на устройствата, т.к при повреда на ADC, което е доста често, е трудно да го смените. Неопакованите ADC понякога са чувствителни към ярка светлина. Например, ако работите близо до настолна лампа, грешката при измерване може да се увеличи. Факт е, че индикаторът и платката на устройството имат известна прозрачност и светлината, проникваща през тях, навлиза в кристала на ADC, причинявайки фотоелектричен ефект. За да премахнете този недостатък, трябва да премахнете платката и след като премахнете индикатора, да залепите местоположението на ADC кристала (той е ясно видим през платката) с дебела хартия.
Когато купувате мултиметри DT, трябва да обърнете внимание на качеството на механиката на превключвателя; не забравяйте да завъртите превключвателя на мултиметъра няколко пъти, за да сте сигурни, че превключването става ясно и без заглушаване: пластмасовите дефекти не могат да бъдат поправени.
Сергей Бобин. „Ремонт на електронно оборудване” No1, 2003г
Всеки потребител, който е добре запознат с основите на електрониката и електротехниката, може самостоятелно да организира и ремонтира мултицета. Но преди да се заемете с такъв ремонт, трябва да се опитате да разберете естеството на настъпилата повреда.
Най-удобно е да проверите изправността на устройството в началния етап на ремонт, като проверите неговата електронна схема. За този случай са разработени следните правила за отстраняване на неизправности:
- необходимо е внимателно да се разгледа печатната платка на мултиметъра, на която може да има ясно различими фабрични дефекти и грешки;
- трябва да се обърне специално внимание на наличието на нежелани къси съединения и некачествено запояване, както и на дефекти по клемите по краищата на платката (в областта на връзката на дисплея). За ремонт ще трябва да използвате запояване;
- фабричните грешки най-често се проявяват във факта, че мултицетът не показва какво трябва според инструкциите и следователно неговият дисплей се изследва преди всичко.
Ако мултицетът дава грешни показания във всички режими и IC1 се нагрява, тогава трябва да проверите конекторите, за да проверите транзисторите. Ако дългите проводници са затворени, тогава ремонтът ще се състои само в отварянето им.
Като цяло може да се натрупа достатъчен брой визуално открити неизправности. Можете да се запознаете с някои от тях в таблицата и след това сами да ги премахнете. (до адреса: Преди ремонт е необходимо да се проучат веригите на мултиметъра, които обикновено се дават в паспорта.
Ако искат да проверят изправността и да поправят индикатора на мултиметъра, обикновено прибягват до използване на допълнително устройство, което произвежда сигнал с подходяща честота и амплитуда (50-60 Hz и единици волта). При липсата му можете да използвате мултицет тип M832 с функция за генериране на правоъгълни импулси (меандър).
За да диагностицирате и ремонтирате дисплея на мултиметъра, трябва да извадите работната платка от корпуса на устройството и да изберете позиция, удобна за проверка на контактите на индикатора (екранът нагоре). След това трябва да свържете края на една сонда към общия терминал на изследвания индикатор (намира се в долния ред, най-вляво) и последователно да докоснете другия край към сигналните изходи на дисплея. В този случай всички негови сегменти трябва да светнат един след друг според окабеляването на сигналните шини, което трябва да се чете отделно. Нормалната "работа" на тестваните сегменти във всички режими показва, че дисплеят работи правилно.
Допълнителна информация. Тази неизправност най-често се проявява по време на работа на цифров мултицет, при който измервателната му част се повреди и се нуждае от ремонт изключително рядко (при условие, че се спазват инструкциите).
Последната забележка касае само постоянни стойности, при измерване на които мултицетът е добре защитен от претоварване. Сериозни трудности при идентифициране на причините за неизправността на устройството най-често се срещат при определяне на съпротивленията на секцията на веригата и в режим на набиране.
В този режим типичните неизправности като правило се появяват в диапазони на измерване до 200 и до 2000 ома. Когато на входа влезе външно напрежение, като правило, резисторите под обозначенията R5, R6, R10, R18 изгарят, както и транзисторът Q1. Освен това кондензаторът C6 често пробива. Последиците от излагане на външен потенциал се проявяват, както следва:
- когато триодът Q1 е напълно "изгорен", при определяне на съпротивлението мултицетът показва една нула;
- в случай на непълна повреда на транзистора, устройството с отворени краища трябва да показва съпротивлението на неговото съединение.
Забележка! В други режими на измерване този транзистор е с късо съединение и следователно няма ефект върху дисплея.
При повреда на C6 мултицетът няма да работи при граници на измерване от 20, 200 и 1000 волта (не е изключена опцията за силно занижаване на показанието).
Ако мултицетът постоянно издава звуков сигнал при набиране или мълчи, тогава причината може да е лошото запояване на щифтовете на IC2. Ремонтът се състои в внимателно запояване.
Проверката и ремонтът на неработещ мултицет, чиято неизправност не е свързана с вече разгледаните случаи, се препоръчва да започне с проверка на напрежението от 3 волта на захранващата шина на ADC. В този случай, на първо място, е необходимо да се уверите, че няма повреда между захранващия терминал и общия терминал на преобразувателя.
Изчезването на индикационните елементи на екрана на дисплея при наличие на преобразувател на захранващо напрежение с висока степен на вероятност показва повреда на неговата верига. Същото заключение може да се направи, когато значителен брой елементи на веригата, разположени в близост до ADC, са изгорени.
Важно! На практика този възел "изгаря" само когато достатъчно високо напрежение (повече от 220 волта) удари неговия вход, което се проявява визуално под формата на пукнатини в съединението на модула.
Преди да говорите за ремонт, трябва да проверите. Един прост начин за тестване на ADC за пригодност за по-нататъшна работа е да наберете неговите терминали с помощта на известен работещ мултицет от същия клас. Имайте предвид, че случаят, когато вторият мултицет неправилно показва резултатите от измерването, не е подходящ за такава проверка.
При подготовка за работа устройството се превключва в режим на „звънене“ на диода, а измервателният край на проводника в червена изолация е свързан към изхода „минус мощност“ на микросхемата. След тази черна сонда всеки от нейните сигнални крака се докосва последователно. Тъй като на входовете на веригата има защитни диоди, свързани в обратна посока, след прилагане на напрежение в посока от мултицет на трета страна, те трябва да се отворят.
Фактът на тяхното отваряне се записва на дисплея под формата на спад на напрежението през кръстовището на полупроводниковия елемент. По същия начин веригата се проверява, когато сонда в черна изолация е свързана към щифт 1 (+ ADC захранване), последвано от докосване на всички други изводи. В този случай индикациите на екрана на дисплея трябва да са същите като в първия случай.